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In this paper, we introduce an adaptive stopping criteria for iterative solver applied to finite element discretizations of both scalar
and vector potential formulations in magnetostatic problems. We base our developments on an equilibrated stress a posteriori error
estimate distinguishing the different error components, namely the discretization error component and the algebraic solver error
component. Our adaptive strategy stops the algebraic iterations when the algebraic error component does not have a significant
influence on the discretization error. Numerical examples with analytic solution show the performance of the proposed adaptive
strategies.

Index Terms—Adaptive stopping criteria, a posteriori error estimate, guaranteed bound, interplay between error components

I. INTRODUCTION

NOwadays, the finite element method is widely used to
study electromagnetic systems. Unfortunately during the

numerical resolution, a large number of CPU time is wasted
due to the unnecessary computational cost. For example, in the
finite element computation, the total numerical error is the sum
of discretization error and algebraic error. When the mesh is
constructed, the discretization error cannot be improved, so it
is interesting to avoid a large number of iterations in algebraic
solver which leads a too small algebraic error. Recently, a
stopping criteria based on a posteriori estimate is developed
for nonlinear diffusion PDEs in a general framework [1]. With
a posteriori estimate, we can distinguish different error com-
ponents in the numerical resolution, namely the discretization
error, algebraic error, and possibly linearization error. This
result is extended to the linear Stokes problems, and applied to
any iterative solver [2]. In this work, we develop this strategy
to the potential formulations in the magnetostatic problems.
Implementation into the FreeFem++ programming language is
invoked [3]. An academic example is provided to illustrate the
performance of our adaptive stopping criteria.

II. NUMERICAL MODEL

Given a divergence-free applied current density Js, the
magnetic flux density B and magnetic field H verify the
following equation:

divB = 0; rotH = Js; B = µH,

where µ represents for the magnetic permeability.
Two following potential formulations can be obtained by

using the vector potential A s.t. B = rotA and the scalar
potential Ω s.t. H = Hs − gradΩ, where rotHs = Js:

rot(
1

µ
rotA) = Js and div(µgradΩ) = div(µHs).

III. ADAPTIVE STOPPING CRITERIA

Algorithm 1 classical Iterative algebraic algorithm

1) Chose initial approximations A0
h ∈ Vh and a tolerance

ε > 0.
2) For i = 1 . . .+∞:

a) Compute Ai
h ∈ Vh, typically from Ai−1

h .
b) Set up the residual equation, yielding Ri

A ∈ RM
with

(µ−1rotAi
h, rotA

′
j) = (Js,A′j)−Ri

A,∀1 ≤ j ≤M.

c) If Ri
A is small enough, stop.

EndFor

Algorithm 2 adaptive iterative algebraic algorithm

1) In step 1, choose also a fixed additional iteration count
ν0 > 0 and real parameters γrem and γalg > 0, typically
of order 10−1. Set ν := ν0.

2) On the given iteration i of the algebraic solver in step 2a,
consider ν := ν0 additional iterations. This gives Ai+ν

h ∈
Vh with Ri+ν

A ∈ RM such that

(µ−1rotAi+ν
h , rotA′j) = (Js,A′j)−Ri+ν

A ,∀1 ≤ j ≤M.
(1)

3) Compute the estimators ηrem, ηalg, . Check the balancing
criterion

ηrem ≤ γremηalg. (2)

If not satisfied, continue performing ν0 additional iter-
ations and updating ν := ν + ν0, until (2) is satisfied.
This again gives (1).

4) On step 2c, compute the estimator ηdisc and stop the
algebraic solver when

ηalg ≤ γalgηdisc. (3)

If not satisfied, update i := i+ ν.



We consider the vector potential A formulation as example.
Using the finite element method, we consist in find the weak
solution Ah ∈ Vh such that

(µ−1rotAh, rotA
′) = (Js,A′), ∀A′ ∈ Vh.

The classical iterative algebraic solver is presented as shown in
Algorithm 1. Based on the development of a posteriori estimate
and stopping criteria, we propose our iterative algorithm with
adaptive stopping criteria shown in Algorithm 2. Recall here
A the exact solution, Ah the numerical solution with exact
algebraic solver, and Ai

h the numerical solution at i− th alge-
braic solution, we define here the different error components
by:

Total error: = ‖µ−1/2rot(A−Ai
h)‖,

Discretization error: = ‖µ−1/2rot(A−Ah)‖,
Algebraic error: = ‖µ−1/2rot(Ah −Ai

h)‖.

The estimators ηalg, ηdisc, ηrem are constructed using the flux
reconstruction technique on local problems [1], [4], which will
be detailed in the full paper.

IV. NUMERICAL APPLICATION

This section presents a numerical assessment of our a
posteriori error estimates and of the proposed adaptive stop-
ping criteria. To illustrate our theoretical results, an academic
example was studied. Suppose a unit cube crossed by a current
density of 10 MA/m [5], the analytic solution for the magnetic
flux density is known [6]. We consider here the vector potential
A formulation. Fig. 1 represents the dependence of different
error components (total error, discretization error, and algebraic
error) and of correspondent estimators (algebraic estimator
and discretization estimator) on the algebraic iteration. As the
mesh is chosen, the discretization error is fixed. The total
error (sum of discretization error and algebraic error) decreases
rapidly in Fig. 1(a) for the first 60–70 algebraic iterations
and then almost stagnates, since the influence of the algebraic
error becomes negligible. This is exactly the point where
our adaptive stopping criteria makes as shown in Fig. 1(b),
leading to an important economy of the algebraic iterations
(70 iterations instead of 120 iterations in total).
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Fig. 1. Different error components and estimators as a function of algebraic
iterations.

In Fig. 2, we display the spatial distribution of the two error
components on left (discretization error and algebraic error)
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Fig. 2. Spatial distributions of the different error components and correspond-
ing estimates.

and of the corresponding estimators on right (discretization es-
timator and algebraic estimator). A nice match can be observed.
That means using our adaptive stopping criteria and a posteriori
estimate, we can avoid an important unnecessary algebraic
iteration, at the same time, an accordant error distribution map
can be generated to the mesh refinement.

V. CONCLUSION

Adaptive stopping criteria based on a posteriori estimates
for iterative solver is introduced for both A and Ω potential
formulations in magnetostatic problems. An academic example
with Freefem++ implementation is carried out to show the
performance of our proposed adaptive stopping criteria. With
our adaptive strategy, an important number of unnecessary
algebraic iterations can be avoided, an accordant error distri-
bution map can be provided to the mesh refinement.
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